

Diagnostica Vertrieb GmbH, Oehleckerring 11-13

22419 Hamburg, Germany

Telephone: +49 (0)89 3799666-6 | **Fax:** +49 (0)89 3799666-99

E-Mail: info@biozol.de

Please note: This document was created automatically and is not a substitute for the manufacturer's original document.

Product Datasheet

Indisulam, CAS [[165668-41-7]] FBM-10-3927

Article Name	Indisulam, CAS [[165668-41-7]]
Biozol Catalog Number	FBM-10-3927
Supplier Catalog Number	10-3927
Alternative Catalog Number	FBM-10-3927-5MG,FBM-10-3927-25MG
Manufacturer	Focus Biomolecules
Category	Biochemikalien
Product Description	RBM39 Molecular glue
Molecular Weight	385.84
Purity	>98% by HPLC , NMR (Conforms)
Form	Off-white solid
CAS Number	[165668-41-7]
Formula	C14H12CIN3O4S2

Application Notes

Indisulam was originally described as a potent antitumor agent that targeted the G1 phase of cell cycle via suppression of activation of CDK2 and cyclin E expression.1 More recently it has been found to act as a molecular glue promoting the recruitment of RNA binding motif protein 39 (RBM39) to the CUL4-DCAF15 E3 ubiquitin ligase leading to proteasomal degradation.2 Removal of splicing factor RBM39 leads to altered RNA splicing and death in multiple cancer cell lines - Indisulam alters the expression of more than 3000 genes and causes widespread intron retention and exon skipping.3 It induced metabolome perturbations and mitochondrial dysfunction in neuroblastoma models leading to complete tumor regression without relapse.4 Arginine has been found to bind to RBM39 causing reprogramming of metabolic genes to promote tumor growth indisulam treatment leading to RBM39 degradation mimics arginine depletion resulting in reduced growth in patient-derived hepatocellular carcinoma organoids.5