

Please note: This document was created automatically and is not a substitute for the manufacturer's original document.

Product Datasheet

Indisulam, CAS [[165668-41-7]]

FBM-10-3927

Article Name	Indisulam, CAS [[165668-41-7]]
Biozol Catalog Number	FBM-10-3927
Supplier Catalog Number	10-3927
Alternative Catalog Number	FBM-10-3927-5MG, FBM-10-3927-25MG
Manufacturer	Focus Biomolecules
Category	Biochemikalien
Product Description	RBM39 Molecular glue...
Molecular Weight	385.84
Purity	>98% by HPLC , NMR (Conforms)
Form	Off-white solid
CAS Number	[165668-41-7]
Formula	C14H12ClN3O4S2

Application Notes

Indisulam was originally described as a potent antitumor agent that targeted the G1 phase of cell cycle via suppression of activation of CDK2 and cyclin E expression.¹ More recently it has been found to act as a molecular glue promoting the recruitment of RNA binding motif protein 39 (RBM39) to the CUL4-DCAF15 E3 ubiquitin ligase leading to proteasomal degradation.² Removal of splicing factor RBM39 leads to altered RNA splicing and death in multiple cancer cell lines - Indisulam alters the expression of more than 3000 genes and causes widespread intron retention and exon skipping.³ It induced metabolome perturbations and mitochondrial dysfunction in neuroblastoma models leading to complete tumor regression without relapse.⁴ Arginine has been found to bind to RBM39 causing reprogramming of metabolic genes to promote tumor growth - indisulam treatment leading to RBM39 degradation mimics arginine depletion resulting in reduced growth in patient-derived hepatocellular carcinoma organoids.⁵