

Please note: This document was created automatically and is not a substitute for the manufacturer's original document.

Product Datasheet

SR-4835, CAS [[2387704-62-1]]

FBM-10-4864

Article Name	SR-4835, CAS [[2387704-62-1]]
Biozol Catalog Number	FBM-10-4864
Supplier Catalog Number	10-4864
Alternative Catalog Number	FBM-10-4864-5MG, FBM-10-4864-25MG
Manufacturer	Focus Biomolecules
Category	Biochemikalien
Product Description	CDK12/13 inhibitor...
Molecular Weight	499.36
Purity	98% by TLC NMR (Conforms)
Form	Off-white solid
CAS Number	[2387704-62-1]
Formula	C21H20Cl2N10O

Application Notes

SR-4835 is a potent and selective inhibitor of cyclin-dependent kinases 12 and 13 (KD50s: CDK12 = 98 nM, CDK13 = 4.9 nM).¹ It displayed efficacy against multiple triple-negative breast cancer cell lines (EC50s: MDA-MB-231 15.5 nM, MDA-MB-468 22.1 nM, HS578T 19.9 nM, MDA-MB-436 24.9 nM). Inhibition of CDK12/13 with SR-4835 resulted in down-regulation of multiple DNA damage response genes and caused increased DNA damage and apoptosis. SR-4835 acted synergistically with DNA-damaging agents and PARP inhibitors to cause triple-negative breast cancer cell death.^{1,2} It acted synergistically with PD-1 blockade to provide a durable immune-mediated antitumor response in a syngeneic breast cancer mouse model.³ SR-4835 has been found to act as a molecular glue that promotes cyclin K degradation.⁴ Inhibition of CDK12 with SR-4835 suppressed tumor initiation and growth in a colorectal cancer mouse model and impaired liver metastasis of colorectal cancer cells while also diminishing cancer stem cell traits through β -catenin pathway activation.⁵