

Please note: This document was created automatically and is not a substitute for the manufacturer's original document.

Product Datasheet

Lactoyl phenylalanine, CAS [[183241-73-8]] FBM-10-5713

Article Name	Lactoyl phenylalanine, CAS [[183241-73-8]]
Biozol Catalog Number	FBM-10-5713
Supplier Catalog Number	10-5713
Alternative Catalog Number	FBM-10-5713-5MG, FBM-10-5713-25MG
Manufacturer	Focus Biomolecules
Category	Biochemikalien
Product Description	Anorexigenic circulating metabolite...
Molecular Weight	237.26
Purity	>98% by HPLC NMR (Conforms)
Form	White solid
CAS Number	[183241-73-8]
Formula	C12H15NO4

Application Notes

Exercise is associated with transient suppression of appetite which previously has been attributed to induction of appetite-regulatory hormone such as GLP-11 or the increase in circulating metabolites including L-lactate². A targeted metabolomics approach with blood samples from two independent human exercise studies resulted in the identification of N-lactoyl-phenylalanine (Lac-Phe, 183241-73-8) as a highly upregulated circulating metabolite following exercise.³ Lac-Phe was shown, using pharmacological and genetic methods, to be an exercise-inducible metabolite that suppresses feeding and obesity. A single injection of Lac-Phe was demonstrated to reduce food intake by ~50% in diet-induced obese mice. However, Lac-Phe is completely inactive when administered orally.⁴